
How to Hash into Elliptic Curves

Thomas Icart1,2

1Sagem Sécurité
2Université du Luxembourg
thomas.icart@m4x.org

Abstract. We describe a new explicit function that given an elliptic
curve E defined over Fpn , maps elements of Fpn into E in deterministic
polynomial time and in a constant number of operations over Fpn . The
function requires to compute a cube root. As an application we show
how to hash deterministically into an elliptic curve.

1 Introduction

Some elliptic curve cryptosystems require to hash into an elliptic curve, for
instance the Boneh-Franklin identity based encryption scheme [1]. In this scheme,
a particular supersingular elliptic curve is used, for which there exists a one-to-
one mapping f from the base field Fp to the curve. This enables to hash using
f(h(m)) where h is a classical hash function.

Password-based authentication protocols give another context where hashing
into an elliptic curve is sometimes required. For instance, the SPEKE (Simple
Password Exponential Key Exchange) [7] and the PAK (Password Authenticated
Key exchange) [4] protocols both require a hash algorithm to map the password
into a point of the curve. However for ordinary curves the classical approach is
inherently probabilistic; this implies that the number of operations required to
hash the password may depend on the password itself. As shown in [3] this can
lead to a timing attack. Therefore, it would be useful to be able to hash into a
curve in a constant number of operations.

The first algorithm mapping Fpn into an elliptic curve in deterministic poly-
nomial time was published by Shallue and Woestijne in ANTS 2006 [10]. The
algorithm is based on Skalba’s equality [13] and uses a modification of the
Tonelli-Shanks algorithm for computing square roots; the algorithm runs in time
O(log4 q) for any field size q = pn, and in time O(log3 q) when q = 3 mod 4.

In this paper, we describe another algorithm that given any elliptic curve E
defined over Fpn , maps elements of Fpn into E in deterministic polynomial time,
when pn = 2 mod 3. The new algorithm is based on a rational, explicit function
from Fpn to E, which can be implemented in O(log3 q) time and a constant
number of operations over Fpn . Our technique is based on computing a cube
root and is simpler than the Shallue and Woestijne algorithm.

As an application we show how to hash deterministically and efficiently into
an elliptic curve. We provide two different constructions. Our first construction is
one-way when the underlying hash function is one-way. The second construction
additionally achieves collision resistance when the underlying hash function is
collision resistant.

1.1 Related Works

We give a brief description of existing techniques to hash into elliptic curves. An
elliptic curve over a field Fpn where p > 3 is defined by a Weierstrass equation:

Y 2 = X3 + aX + b (1)

where a and b are elements of Fpn . Throughout this paper, we note Ea,b the
curve associated to these parameters. It is well known that the set of points
forms a group; we denote by Ea,b(Fpn) this group and by N its order. We also
note q = pn: in particular Fq is the field of pn elements.

‘Try-and-Increment’ Method. The algorithm is described in [2] and works
as follows:
Input: u an integer.
Output: Q, a point of Ea,b(Fq).

1. For i = 0 to k − 1
(a) Set x = u+ i
(b) If x3 + ax + b is a quadratic residue in Fq, then return Q = (x, (x3 +

ax+ b)1/2)
2. end For
3. Return ⊥

Heuristically, the algorithm fails to return a point for a fraction 2−k of the
inputs, where k is a security parameter. One drawback of the algorithm is that
the number of operations is not constant. Indeed the number of steps of the
algorithm depends on the input u: approximately half of the u are encoded
within 1 step, one fourth within 2 steps, etc. In practice, if the input u has to
remain secret, this can lead to a timing attack.

A simple countermeasure consists in outputting the point Q only after the
end of the For loop so that the number of steps remains constant. However even
with this countermeasure, the running time is not necessarily constant. Namely,
if the Legendre symbol is used to determine whether x3 + ax+ b is a quadratic
residue, such operation takes O(log2 q) time using quadratic reciprocity laws but
in general the number of operations is not constant and depends on the input u.
Alternatively, one can compute the Legendre symbol using an exponentiation:(

z
q

)
= z(q−1)/2.

Then the numbers of operations is constant but the running time for computing
the Legendre symbol is now O(log3 q).

To summarize, if we do not use any countermeasure then the average running
time is O(log3 q) due to the square root computation which takes O(log3 q) when
q = 3 mod 4. If we use a constant number of steps k with k = O(log q), while
computing the Legendre symbol efficiently, the running time is still k ·O(log2 q)+
O(log3 q) = O(log3 q); however one might still be vulnerable to a timing attack.
Finally, if we want to have a constant number of operations, one can use the
exponentiation method to compute the Legendre symbol; however the running
time becomes k · O(log3 q) + O(log3 q) = O(log4 q). In this paper, we describe
an algorithm with running time O(log3 q) and constant number of operations1.

The ‘Twisted’ Curves. Another technique consists in using a curve and its
twist as suggested in [5]. Given a curve defined by equation (1), one can define
the twisted curve of equation

cY 2 = X3 + aX + b

where c is a quadratic non-residue in Fq. Then any x ∈ Fq is either the abscissa
of a point of the original curve or its twist.

One drawback is that a modification of the cryptosystem is required to hide to
the adversary which curve is used. In other words, this hashing technique cannot
be used as a black box. Another drawback is that it doubles the computation
time because the same computations must be performed separately on both
curves.

Supersingular Curves. A curve Ea,b is called supersingular when N = q + 1.
When q 6= 1 mod 3, the map x 7→ x3 is a bijection, therefore the curves of
equations

Y 2 = X3 + b

are supersingular. One can then define the encoding

f : u 7→ ((u2 − b)1/3, u) (2)

and then the hash function

H : m 7→ ((h(m)2 − b)1/3, h(m))

where h is a classical hash function.
However, the discrete logarithm on these curves is much easier than for or-

dinary curves. Indeed, such curves have an efficient computable pairing which
1 In principle, it should be possible to implement the ‘try-and-increment’ method in

constant time and complexity O(log3 q). For this, one should monitor the running
time and eventually use dummy operations. However this could be cumbersome to
implement in practice.

enables to map the discrete logarithm problem onto a finite field; this is the MOV
attack [8]. Therefore in order to avoid this attack, much larger parameters must
be used. When no pairing operation is required, it is therefore more efficient to
use ordinary curves.

The Shallue-Woestijne Algorithm. In ANTS 2006, Andrew Shallue and
Christian van de Woestijne have proposed a new algorithm, that generates el-
liptic curve points in deterministic polynomial time [10].

Let f(x) = x3 + ax+ b. The algorithm is based on the Skalba’s equality [13]:
there exists four maps X1(t), X2(t), X3(t), X4(t) such that

f(X1(t)) · f(X2(t)) · f(X3(t)) = X4(t)2.

Then in a finite field, for a fixed parameter t, at least one of the f(Xi(t)) must
be a quadratic residue, which implies that this Xi(t) is an abscissa of a point of
the elliptic curve y2 = f(x).

The computation of X1(t), X2(t), X3(t), X4(t) and the choice amongst the
Xi(t) require to compute square roots in Fq. Computing square roots in Fq can
be done in probabilistic polynomial time using the Tonelli-Shanks algorithm.
Thanks to the Skalba equality, the authors of [10] show how to do it determinis-
tically using a modification of the Tonelli-Shanks algorithm, in time O(log4 q).
We note that for q = 3 mod 4, computing a square root is simply an exponen-
tiation, which takes O(log3 q). Therefore the Shallue-Woestijne algorithm runs
in time O(log4 q) for any field size q = pn, and in time O(log3 q) when q = 3
mod 4.

Using H(m) = h(m).G We note that for most protocols, it is not possible
to hash using H(m) = h(m).G where h(m) ∈ Z and G is a generator of the
group of points of the elliptic curves. Namely in this case, the discrete logarithm
of H(m) with respect to G is known, which makes most protocols insecure. For
example, it is easy to see that for Boneh-Franklin identity encryption scheme, the
attacker can then decrypt any ciphertext. This remains true if we use H(m) =
h1(m).G1 + h2(m).G2 or any such linear combination; in this case, the attacker
can compute one Boneh-Franklin private key from a set of other private keys by
solving a linear system.

2 An explicit Encoding from Fq to E(Fq)

We consider the curve Ea,b : Y 2 = X3 + aX + b over the field Fpn where p > 3
and pn = 2 mod 3. In these finite fields, the function

x 7→ x3

is a bijection with inverse function

x 7→ x1/3 = x(2pn−1)/3.

This enables to create a simple parametrization of a subset of the elliptic-curve
Ea,b(Fpn). To our knowledge, this parametrization is new. Let

fa,b : Fpn 7→ Ea,b

u 7→ (x, y)

where

x =
(
v2 − b− u6

27

)1/3

+
u2

3
y = ux+ v

where

v =
3a− u4

6u
.

For u = 0, we fix fa,b(0) = O, the neutral element of the elliptic curve.

Lemma 1. Let Fpn be a field where pn = 2 mod 3 and p > 3. For any u ∈ Fpn ,
fa,b(u) is a point of Ea,b(Fpn) : Y 2 = X3 + aX + b.

Proof. For u 6= 0, let (x, y) = fa,b(u). From the definition of x:(
x− u2

3

)3

= v2 − b− u6

27
.

This expands into:

x3 − u2x2 +
u4

3
x+ b− v2 = 0.

Since u4/3 = a− 2uv, this can be rewritten into

x3 − u2x2 + (a− 2uv)x+ b− v2 = 0

which leads to

x3 + ax+ b = u2x2 + 2uvx+ v2 = (ux+ v)2

and finally x3 + ax+ b = y2. ut

We present a similar result in characteristic 2 in appendix A.

Remark 1. We note that if x 7→ x3 is not a bijection, but (v2 − b − u6/27) is a
cube in Fq, we can still use the formulas to compute (x, y) ∈ Ea,b.

3 Properties of our new Encoding fa,b

Lemma 2. The function fa,b can be implemented in deterministic polynomial
time, with O(log3 q) running time and a constant number of operations over Fq.

Proof. When q = 2 mod 3, computing x 7→ x1/3 is an exponentiation with
exponent (2q−1)/3. This can be implemented in a constant number of operations
over Fq. We also need to compute v = (3a− u4)/6u, which requires to compute
1/u = uq−2, which can also be done in a constant number of operations over Fq.
The total running time is then O(log3 q). ut

In the following, we show how to compute f−1
a,b (P) given a point P . This

will be used to show the one-wayness and collision resistance properties of the
resulting hash function (see Section 4).

Lemma 3. Let P = (x, y) be a point on the curve Ea,b. The solutions us of
fa,b(us) = P are the solutions of the polynomial equation:

u4 − 6u2x+ 6uy − 3a = 0. (3)

Proof. The proof is very similar to the proof of Lemma 1. We write v = 3a−u4

6u .
We show that the two systems are equivalent:{

y2 = x3 + ax+ b
u4 − 6u2x+ 6uy − 3a = 0 ⇔

{(
x− u2

3

)3

= v2 − b− u6

27

y = ux+ v

From the definition of fa,b, this proves the result of the Lemma.
We have:{

y2 = x3 + ax+ b
u4 − 6u2x+ 6uy − 3a = 0 ⇔

{
y2 = x3 + ax+ b
y = ux+ v

⇔
{
u2x2 + 2uvx+ v2 = x3 + ax+ b

y = ux+ v
⇔
{
x3 − u2x2 + (a− 2uv)x+ b− v2 = 0

y = ux+ v

⇔
{
x3 − u2x2 + u4

3 x+ b− v2 = 0
y = ux+ v

⇔

{(
x− u2

3

)3

= v2 − b− u6

27

y = ux+ v

ut

Lemma 4. f−1
a,b (P) is computable in polynomial time and

∣∣∣f−1
a,b (P)

∣∣∣ ≤ 4, for all
P ∈ Ea,b,

Proof. Lemma 3 ensures that to compute f−1
a,b , it is sufficient to solve a degree

4 equation over Fq. Solving polynomial equations of degree d over a finite field
can be solved in O(d2 log3 q) binary operations using the Berlekamp algorithm
[12]. For this reason, f−1

a,b is computable in polynomial time. Furthermore, since
the pre-images are solution of a degree 4 equation over Fq, there are at most 4

solutions for any point P , which implies that
∣∣∣f−1

a,b (P)
∣∣∣ ≤ 4. ut

From
∣∣∣f−1

a,b (P)
∣∣∣ ≤ 4 we obtain that our function fa,b generates at least a

constant fraction of the elliptic-curve points:

Corollary 1. Let Ea,b be a curve over Fq, where q = pn with p > 3 and pn = 2
mod 3. We have

q

4
≤ |Im(fa,b)| ≤ q

The bounds for |Im(fa,b)| are not tight. We make the following conjecture:

Conjecture 1. There exists a constant λ such that for any q, a, b∣∣∣∣|Im(fa,b)| −
5
8
|Ea,b(Fq)|

∣∣∣∣ ≤ λ√q
In the following, we motivate our conjecture. From lemma 3, the size of Im(fa,b)
depends on the existence of a solution of the equation u4− 6u2x+ 6uy− 3a = 0
for a given point (x, y) of Ea,b(Fq). A degree 4 polynomial has no root if and only
if it is irreducible or if it is the product of two degree 2 irreducible polynomials.
Over any finite field Fq with large q, it is known that random polynomials of
degree d are irreducible with asymptotic probability 1/d as q goes to infinity
[9]. For this reason, there exist approximately q2/2 irreducible degree 2 monic

polynomials. Hence, there exist
(
q2/2

2

)
≈ q4/8 products of two irreducible

degree 2 polynomials. This implies that there exist approximately q4/4+ q4/8 =
3q4/8 degree 4 monic polynomials with no root in Fq. For this reason, we can
estimate that a fraction 5/8 of random monic degree 4 polynomials have roots.
As a consequence the size of Im(fa,b) should be approximately 5/8 of the size of
Ea,b. Our conjecture is made by analogy of the Hasse bound.

Theorem 1 (Hasse Bound). ||Ea,b(Fq)| − q − 1| ≤ 2
√
q

We have tested our conjecture for all curves Ea,b over base field Fp such
that p = 2 mod 3 with p < 10000. For all these curves, we have computed the
number of points of the curve and we also have computed the number of points
in Im(fa,b). After this computation, we found a lower bound for λ as 2.3114.

From this conjecture, we have the following corollary, which gives a deter-
ministic, surjective function onto Ea,b(Fq).

Corollary 2. If Conjecture 1 is true with λ ≤ 3, if q = 2 mod 3 and q > 1080,
then:

F : (Fq)2 7→ Ea,b(Fq)
(u1, u2) 7→ fa,b(u1) + fa,b(u2)

is a surjective map.

Proof. To prove that F is surjective, we use the drawer principle. Given a point
P ∈ Ea,b(Fq), the set S1 = {P − fa,b(u)}u∈Fq

is made of at least 5q/8 −
3
√
q + 1 + 2

√
q points. The set S2 = {fa,b(u)}u∈Fq

is also made of the same
number of points. This implies that the set S1 ∩ S2 is not empty if |S1|+ |S2| >
|Ea,b(Fq)|. This is always true when

2
(

5q
8
− 3
√
q + 1 + 2

√
q

)
> q + 1 + 2

√
q

which leads to q > 1080. ut

Finally, we note that computing discrete logarithms of fa,b(u) is hard if com-
puting discrete logarithms in Ea,b(Fq) is hard. This is because the function fa,b

is efficiently invertible and
∣∣∣f−1

a,b (P)
∣∣∣ ≤ 4 for any P . Let G be a generator of

Ea,b(Fq). If we are given as input a random point P , with probability at least
1/4 we have that P ∈ Im(fa,b), so we can compute u ∈ Fq such that P = fa,b(u).
Then if an algorithm can compute x such that fa,b(u) = x.G, this gives x such
that P = x.G. This shows that if an algorithm can compute the discrete log-
arithm of fa,b(u), then such algorithm can be used to compute the discrete
logarithm in Ea,b(Fq). The same argument applies to any encoding function f
which is polynomially invertible on its outputs and with a polynomially bounded
pre-image size. The argument can be easily extended to show that for any gen-
erator base (G1, ..., Gn), computing x1, . . . , xn such that fa,b(x) =

∑
i xi.Gi is

hard if computing discrete logarithms in Ea,b(Fq) is hard.

4 How to Hash onto Elliptic Curves

Given a function f into an elliptic curve E, we describe two constructions of
hash functions into E. We define L as the maximal size of f−1(P) where P is
any point on E:

L = max
P∈E

(
∣∣f−1(P)

∣∣)
For our encoding function fa,b, we have L ≤ 4 (see lemma 4). We note that if
we work in a subgroup of E of order n with cofactor r, we can use the encoding
function f ′a,b = r.fa,b. If r is relatively prime to n, then we must have L ≤ 4r.

Our first construction is as follows: given a hash function h : {0, 1}∗ 7→ Fq,
we define

H(m) = f(h(m))

as a hash function into the curve Ea,b(Fq). In the following, we show that H is
one-way if h is one way.

4.1 One-Wayness

Definition 1. A hash function is (t, ε)-one-way, if any algorithm running in
time t, when given a random y ∈ Im(h) as input, outputs m such that h(m) = y
with probability at most ε. A hash function is one-way if ε is negligible for any
polynomial t in the security parameter.

Lemma 5. If h is a (t, ε)-one-way hash function then H is (t′, ε′)-one-way
where ε′ = L2ε, where L = maxP∈E(

∣∣f−1(P)
∣∣). Therefore, if L is polynomial in

the security parameter and h is one-way, then H is one-way.

The proof is done in the full version of this paper [6].

4.2 Collision Resistance

Definition 2. A family H of hash functions is (t, ε)-collision-resistant, if any
algorithm running in time t, when given a random h ∈ H, outputs (m,m′) such
that h(m) = h(m′) with probability at most ε.

Our first construction is easily extended to hash function families: given a
family H of hash functions, we define for each h ∈ H the function H = f ◦ h.
We then study whether the family of hash functions formed by the H is collision
resistant.

A collision to one H occurs if and only if:

1. there exists m and m′ such that h(m) = h(m′); this is a collision for h,
2. or f(u) = f(u′) for u = h(m), u′ = h(m′) and u 6= u′; this is a collision for
f .

In the following, we argue that we cannot prove the collision resistance of H
based on the collision resistance of h only. Namely, we note that given a hash
function h, it is easy to construct an elliptic curve with collisions on H = fa,b◦h.
Indeed, given (m,m′), let u = h(m) and u′ = h(m′). From this couple (u, u′),
we compute the degree 4 polynomial:

(X − u)(X − u′)(X2 + (u+ u′)X − w) (4)

where w is a randomly chosen element in Fq. This polynomial is equal to:

X4 − 6xX2 + 6yX − 3a

where

x = −uu
′ + w − (u+ u′)2

6
, y =

(u+ u′)(uu′ − w)
6

, a = −uu
′w

3
.

Let b = y2 − x3 − ax. Hence (x, y) is a point on the elliptic curve Ea,b by
definition of b. For this reason, a preimage of (x, y) through fa,b is a solution of
the equation:

X4 − 6xX2 + 6yX − 3a = 0 (5)

which is exactly the polynomial (4) by definition of x, y and a. For this reason,
u and u′ are solutions of the equations (4) and are preimages of (x, y). Hence
(m,m′) is a collision for H = fa,b ◦ h.

However, if Ea,b is defined independently from h, it seems difficult to find
(m,m′) such that fa,b(y) = fa,b(y′) where y = h(m) and y′ = h(m′). In this case,
H should be collision resistant. We cannot prove that H is collision resistant
based only on the collision resistance of h, and we clearly need some additional
properties on h. In the next section, we provide a different construction for which
collision resistance can be proved based only on the collision resistance of h.

4.3 Making f Collision Free

In this section, we show how to construct a family G of functions derived from
an encoding function f , which is collision free except with negligible probability.
Then given a hash function h and given g ∈ G, H ′(m) = g(h(m)) will be collision
resistant assuming that h is collision resistant.

Definition 3. A family G of functions is ε-collision-free if the probability that
g ∈ G has a collision is at most ε.

In other words, a collision-free family of functions is a family in which most
functions are injective. To construct such collision free family, we use the notion
of family of pair-wise independent functions.

Definition 4 (Pair-wise Independence). A family V of functions v : R 7→ S
is ε-pair-wise independent if given any couple (r1, r2) ∈ R2 with r1 6= r2 and any
couple (s1, s2) ∈ S2:

Pr
v∈V

[v(r1) = s1 ∧ v(r2) = s2] ≤ ε.

The following theorem shows that the family G = {f ◦ v}v∈V is collision free.
The proof is in the full version of the paper [6].

Theorem 2. Let f : S 7→ T be a function such that
∣∣f−1(t)

∣∣ ≤ L for all t ∈ T .
Let V be a family of ε-pair-wise independent functions from R to S. Then the
family G = (f ◦ v)v∈V is ε′-collision-free where

ε′ = |R|2 · |S| · L · ε.

Therefore, our second construction is as follows. Given a security parameter k
and an integer q = pn with q ≥ 2k, we consider the following family of functions:

(vc,d)c,d∈Fq
: {0, 1}k 7→ Fq

x 7→ c · x+ d

where x is seen as an element in Fq. It is easy to see that this family is 1/q2-
pair-wise independent.

Given an elliptic curve E, we combine the encoding function f with the
functions in the vc,d family to get a collision-free family G:

G = (f ◦ vc,d)c,d∈Fq
: {0, 1}k 7→ E(Fq)

x 7→ f(c · x+ d)

Finally, given a family H of collision-resistant functions h : {0, 1}∗ 7→ {0, 1}k,
we construct the following family of hash functions into the curve E:

HE = (f ◦ vc,d ◦ h) c, d ∈ Fq

h ∈ H
: {0, 1}∗ 7→ E(Fq)

m 7→ f(c · h(m) + d)

Theorem 3. If H is a (t, ε)-collision resistant family of hash functions, then
HE is a (t′, ε′)-collision resistant family of hash functions where

ε′ = ε+ L
22k

q
.

The proof is in the full version of the paper [6].
Note that if we take q of size 5k/2 bits, we obtain ε′ ≤ ε+2−k/2. Therefore if

we have a family H of k-bit ε-collision resistant hash functions where ε = 2−k/2,
we obtain the same security level for HE , namely ε′ = 2−k/2+1.

In practice, given a curve E defined modulo a prime p, we randomly select
c, d ∈ Fp and a function h ∈ H; this defines a hash function:

HE : {0, 1}∗ 7→ E(Fp)
m 7→ f(c · h(m) + d)

Finally, we have that HE is a one way hash function when c 6= 0:

Lemma 6. If h is a (t, ε)-one-way hash function, then for any c, d with c 6= 0,
HE = f ◦ vc,d ◦ h is a (t′, ε′)-one way hash function ,with ε′ = L2 · ε.

The proof is in the full version of the paper [6].
We note that this second construction requires a much larger q than the

previous construction. For example, for a 160-bit hash function h, the first con-
struction requires a 160-bit integer q, whereas our second construction requires
q to be of size 5 · 160/2 = 400 bits.

5 Practical Implementations

In this section we compare the running time needed by various encodings into
elliptic-curves. We first consider our function fa,b with Euclide’s algorithm to
implement the inversion in Fp; we also consider fa,b (v2) with an exponentiation
instead in order to have a constant number of operations over Fp.

We have also implemented the various ‘try-and-increment’ algorithms: the
classic algorithm, the algorithm with a constant number of steps but with fast
Legendre symbol (v2) and the algorithm with a constant number of operations
using an exponentiation for the Legendre symbol (v3). We have also implemented
the encoding defined by equation (2) for a supersingular elliptic-curve; in this
case we have used a finite field ensuring the same security level as for ordinary
elliptic curves.

The implementation has been done on 10 different 160-bit primes, randomly
chosen such that p = 2 mod 3 and p = 3 mod 4. For every prime, 10 different
couples of parameters (a, b) have been randomly chosen. And on these 10 differ-
ent curves, we runned every algorithm 1000 times on random inputs. We used a
512-bit prime for the supersingular curves case.

Algorithm Constant Running Time Running Time

fa,b No 0.22 ms
Try and Increment No 0.24 ms
Try and Increment v2 No 1.86 ms

fa,b v2 Yes 0.40 ms
Try and Increment v3 Yes 16.10 ms
Supersingular Curves Yes 3.67 ms

Table 1. Average Time of each Algorithms using the Number Theory Library (NTL)
[11] and running on a laptop using the Intel R©CoreTM2 Duo T7100 chip at a frequency
of 1, 80 Ghz.

We obtain that when a constant running time is required, our method per-
forms much better than the ‘try-and-increment’ algorithm and the algorithm
for supersingular curves. It also performs slightly better even when a constant
running time is not required.

6 Conclusion

We have provided a new algorithm that encodes an integer into an elliptic curve
point in a constant number of field operations. This encoding exists for any
curve under the condition that the map x 7→ x3 is a bijection on the base
field. This encoding is efficiently computable with the same complexity as one
exponentiation and one inversion on the base field.

From our encoding, we have defined two constructions, which enable to hash
into an elliptic curve. The first construction is provably one-way and the second is
provably one-way and collision resistant in the standard model. Our algorithm
can be used for password based authentication protocol over elliptic curves.
Indeed, it enables to efficiently encode passwords or PIN-codes into points of
the curve in a constant number of field operations.

We also note that our encoding enables to compute points of elliptic curves
over RSA rings without knowing the factorization of N = pq. Consider the
following problem: given N = pq where p and q are prime integers and a, b in
ZN , find (x, y) such that y2 = x3 + ax+ b mod N . Previously, factoring N was
required to compute such (x, y). Our function fa,b proves that a cube root oracle
is actually sufficient.

Acknowledgments: I wish to thank Jean-Sébastien Coron for the time he spent
to help me write this paper. I also thank Julien Bringer, Hervé Chabanne, Bruno
Kindarji and the anonymous referees for their helpful comments.

References

1. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil
pairing. In Joe Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer
Science, pages 213–229. Springer, 2001.

2. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing.
J. Cryptology, 17(4):297–319, 2004.

3. Colin Boyd, Paul Montague, and Khanh Quoc Nguyen. Elliptic curve based pass-
word authenticated key exchange protocols. In Vijay Varadharajan and Yi Mu,
editors, ACISP, volume 2119 of Lecture Notes in Computer Science, pages 487–501.
Springer, 2001.

4. Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure password-
authenticated key exchange using diffie-hellman. In EUROCRYPT, pages 156–171,
2000.

5. Olivier Chevassut, Pierre-Alain Fouque, Pierrick Gaudry, and David Pointcheval.
The twist-augmented technique for key exchange. In Moti Yung, Yevgeniy Dodis,
Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography, volume 3958
of Lecture Notes in Computer Science, pages 410–426. Springer, 2006.

6. Thomas Icart. How to hash into an elliptic-curve. Publicly available on
http://eprint.iacr.org/2009/226.

7. David P. Jablon. Strong password-only authenticated key exchange. SIGCOMM
Comput. Commun. Rev., 26(5):5–26, 1996.

8. Alfred Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing elliptic
curve logarithms to logarithms in a finite field. IEEE Transactions on Information
Theory, 39(5):1639–1646, 1993.

9. Robert Sedgewick and Philippe Flajolet. An Introduction to the Analysis of Al-
gorithms. Addison-Wesley Publishing Company, 1996. 512 pages. (ISBN 0-201-
40009-X).

10. Andrew Shallue and Christiaan van de Woestijne. Construction of rational points
on elliptic curves over finite fields. In Florian Hess, Sebastian Pauli, and Michael E.

Pohst, editors, ANTS, volume 4076 of Lecture Notes in Computer Science, pages
510–524. Springer, 2006.

11. Victor Shoup. Ntl, Number Theory C++ Library. http://www.shoup.net/ntl/.

12. Victor Shoup. A new polynomial factorization algorithm and its implementation.
J. Symb. Comput., 20(4):363–397, 1995.

13. M. Skalba. Points on elliptic curves over finite fields. Acta Arith, 117:293–301,
2005.

A An explicit Encoding from F2n to E(F2n)

The equations which define elliptic curves in characteristic 2 are somehow dif-
ferent from the Weierstrass equation:

Y 2 +XY = X3 + aX2 + b

where a and b are elements of F2n . For an odd n, the map x 7→ x3 is a bijection.
Let

fa,b : F2n 7→ (F2n)2

u 7→ (x, ux+ v2)

where

v = a+ u+ u2

x = (v4 + v3 + b)1/3 + v.

Lemma 7. Let F2n be a field with n odd. For any u ∈ F2n , fa,b(u) is a point of
Ea,b : Y 2 +XY = X3 + aX2 + b.

Proof. Given a parameter u, let (x, y) be fa,b(u). We have the following equations
for x, u and v:

0 = (x+ v)3 + b+ v3 + v4

= x3 + vx2 + v2x+ b+ v4.

Since v = a+ u+ u2, this can be rewritten into:

x3 + ax2 + b = ux2 + u2x2 + v2x+ v4

= (ux+ v2)((u+ 1)x+ v2) = y(x+ y)

Hence, (x, y) = fa,b(u) is a point of Ea,b. ut

A.1 Cardinality of Im(fa,b) in Characteristic 2

As in the case of the characteristic p, it is possible to bound the |Im(fa,b)|.

Theorem 4. 2n−2 < |Im(fa,b)| ≤ 2n

Proof. The inequality |Im(fa,b)| ≤ 2n is the consequence that fa,b is a function.
The other side of the inequality 2n−2 < |Im(fa,b)| can be explained thanks to

the equation y = ux+a2+u2+u4. As for the characteristic p, the second equation
of the Lemma 7 is enough to inverse fa,b. This equation can be rewritten as

0 = y + a+ ux+ u2 + u4

Given a point (x, y), if u is a solution of this equation then fa,b(u) = (x, y). Since
the equation is of degree 4, there are at most 4 different u for each point image
of fa,b. For this reason, there are at least 2n/4 = 2n−2 points in Im(fa,b). ut

